distortions are now more precisely described, are quite clearly real and cannot be suspected to be artifacts of refinement.

In both the $\mathrm{Ti}(1)$ and the $\mathrm{Ti}(2)$ coordination octahedra in $\mathrm{BaTi}_{4} \mathrm{O}_{9}$ the Ti atoms are displaced away from the centers of the octahedra as already observed by Templeton \& Dauben (1960). Such distortions have been described and compared with similar observations in other compounds by Shirane, Pepinsky \& Frazer (1956) in PbTiO_{3}, by Baur (1961) in brookite and by Tillmanns (1974) in $\mathrm{BaTi}_{2} \mathrm{O}_{5}$. In $\mathrm{BaTi}_{4} \mathrm{O}_{9}$, in $\mathrm{Ba}_{6} \mathrm{Ti}_{17} \mathrm{O}_{40}$ and in $\mathrm{BaTi}_{2} \mathrm{O}_{5}$ these octahedral distortions can be correlated with the bond-strength deviations at the O atoms (Baur, 1970).

The b cell edge of about $4.0 \AA$ in the Wadsley/ Andersson type phases corresponds to the corner-to-corner distance of the coordination octahedra or to twice the $\mathrm{Ti}-\mathrm{O}$ distance in a titanate. In the barium titanates which adopt this structural type this means that the b edges are about $3.9 \AA$ long. However, the b constant of $\mathrm{BaTi}_{4} \mathrm{O}_{9}$ measures only $3.794 \AA$ and is thus the shortest on record for any barium titanate. This shortness is connected to the above-mentioned offcentering of the Ti atoms and results in angles $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$
parallel to [010] of 151 and 156° instead of the expected 180° (see Table 2).

We thank the University Computer Centers at Mainz and Illinois at Chicago for computer time. Support by NATO (Research Grant No. 005.82 to WHB and ET) is gratefully acknowledged.

References

Andersson, S. \& Wadsley, A. D. (1961). Acta Cryst. 14, 1245-1249.
Baur, W. H. (1961). Acta Cryst. 14, 214-216.
Bavr, W. H. (1970). Trans. Am. Crystallogr. Assoc. 6, 129-155.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Lukaszewicz, K. (1957). Rocz. Chem. 31, 1111-1122.
Shirane, G., Pepinsky, R. \& Frazer, B. C. (1956). Acta Cryst. 9, 131-I40.
Templeton, D. H. \& Dauben, C. H. (1960). J. Chem. Phys. 32, 1515-1518.
Tillmanns, E. (1974). Acta Cryst. B30, 2894-2896.
Tillmanns, E. \& Baur, W. H. (1970). Acta Cryst. B26, 1645-1654.
Tillmanns, E., Hofmeister, W. \& Baur, W. H. (1983). J. Am. Ceram. Soc. 66, 268-271.
Tillmanns, E., Hofmeister, W. \& Baur, W. H. (I984). In preparation.

Acta Cryst. (1984). C40, 1512-1515

Structures of Phase IV Rubidium Nitrate, $\mathrm{RbNO}_{\mathbf{3}}$, and Phase II Caesium Nitrate, CsNO_{3}

By Christopher Dean, Trevor W. Hambley* and Michael R. Snow
Department of Physical and Inorganic Chemistry, University of Adelaide, GPO Box 498, Adelaide, South Australia 5001, Australia

(Received 23 December 1983; accepted 7 June 1984)

Abstract

RbNO}_{3}: M_{r}=147.47\), trigonal, $P 3_{2}, a=$ 10.502 (1), $c=7.473$ (1) $\AA, V=713.8$ (1) $\AA^{3}, Z=9$, $D_{x}=3.106 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $152.5 \mathrm{~cm}^{-1}, F(000)=612, T=299.5 \mathrm{~K}$, final $R=$ 3.3% for 797 unique observed reflections. CsNO_{3} : $M_{r}=194.91$, trigonal, $P 3_{1}, \quad a=10.931$ (2), $\quad c=$ 7.763 (3) $\AA, \quad V=803.1$ (4) $\AA^{3}, \quad Z=9, \quad D_{x}=$ $3.626 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $100.96 \mathrm{~cm}^{-1}, F(000)=774, T=299.5 \mathrm{~K}$, final $R=$ 4.7% for 760 unique observed reflections. The structures were found to be isomorphous and similar to that of $\mathrm{TINO}_{3}(\mathrm{III})$. The three unique nitrates have site symmetries of C_{1} but the symmetry of two of them is close to C_{s} or C_{2}. Large nitrate-ion reorientations are

[^0]proposed for transformation to the high-pressure phases.

Introduction. The known polymorphs of RbNO_{3} are related as follows:
and CsNO_{3} undergoes the polymorphic transformations:

$$
\mathrm{IV} \stackrel{7.2 \mathrm{GPa}}{\longleftrightarrow} \mathrm{III} \stackrel{1.8 \mathrm{GPa}}{\longleftrightarrow} \mathrm{II} \xrightarrow{434 \mathrm{~K}} \mathrm{I}
$$

(Kalliomäki \& Meisalo, 1979; Adams \& Tan, 1981). A comprehensive review of the above thermal-phase transformations is given by Pistorius (1976). It has been suggested (Brooker, 1973; DeLacy \& Kennard, 1971) that the room-temperature phases $\mathrm{RbNO}_{3}(\mathrm{IV})$
© 1984 International Union of Crystallography
and $\mathrm{CsNO}_{3}(\mathrm{II})$ are isomorphous and it was the object of this series of experiments to determine these two structures in order to allow correlation with the transformation properties. The structures of RbNO_{3} (IV) and CsNO_{3} (II) have recently been solved by neutron diffraction [Shamsuzzoha \& Lucas (1982) and Lucas (1983) respectively].

Experimental. Source, E. Merck. Enraf-Nonius CAD-4 diffractometer. Crystals cut from c-axis needles with $\{2 \overline{1} 0\}$ and $\{001\}$ form faces.
RbNO_{3} : Recrystallized from aqueous solution by ethanol vapour diffusion, crystal 0.1 mm across \times 0.13 mm long. Cell parameters from setting angles of 25 reflections, $24<\theta<28^{\circ}$, transmission values from absorption corrections: min. $=0 \cdot 15, \max .=0 \cdot 23$. For intensity measurements max. $\sin (\theta) / \lambda=0.595 \AA^{-1}$, index ranges ($0 \leq h \leq 12,0 \leq k \leq 12,-8 \leq l \leq 8$) and ($-12 \leq h \leq 0,0 \leq k \leq 12,0 \leq l \leq 8$), standard reflections $\overline{3} 00, \overline{2} 11$ and 111 with no variation, 1259 reflections measured, all unique and 465 unobserved ($F<5 \sigma_{F}$), $R_{\text {int }}=0.0104$. Structure solved by Patterson and successive Fourier synthesis, $\sum w(\Delta F)^{2}$ minimized. Atomic coordinates, anisotropic thermal parameters, scale factor, weighting scheme and secondary extinction refined. Final $R=3.3 \%, R_{w}=3.5 \%, w=$ $k\left(\sigma_{F}^{2}+|g| F^{2}\right), k=2 \cdot 62, g=-0.00037$, max. (Δ / σ) $=0.286$, max. and min. heights 1.15 and $0.677 \mathrm{e}^{-3}$, secondary extinction coefficient $=0.0016 \mathrm{~mm}^{-1}$.
CsNO_{3} : Recrystallized from aqueous solution by evaporation, crystal 0.1 mm across $\times 0.19 \mathrm{~mm}$ long. Cell parameters from setting angles of 25 reflections, $5<\theta<21^{\circ}$, transmission values from absorption corrections: $\min .=0.03$, max. $=0.21$. For intensity measurements max. $\sin (\theta) / \lambda=0.571 \AA^{-1}$, index ranges ($0 \leq h \leq 12, \quad 0 \leq k \leq 12, \quad-12 \leq l \leq 12$), standard reflections $22 \overline{2}, 2 \overline{4} 2$ and $12 \overline{1} \overline{1}$ with no variation, 1055 reflections measured, 940 unique and 180 unobserved ($F<5 \sigma_{F}$), $R_{\text {int }}=0.0245$. Structure solved by Patterson and successive Fourier synthesis, $\sum w(\Delta F)^{2}$ minimized. Atomic coordinates, anisotropic thermal parameters, scale factor, weighting scheme and secondary extinction correction refined. Final $R=4.7 \%, R_{w}=$ $5 \cdot 5 \%, w=k\left(\sigma_{F}^{2}+|g| F^{2}\right), k=19 \cdot 8, g=0.00033$, max. $(\Delta / \sigma)=0.381$, max. and min. heights 1.64 and $-1.66 \mathrm{e} \AA^{-3}$, secondary extinction coefficient $=$ $0.0012 \mathrm{~mm}^{-1}$.

The absolute configurations were affirmed (Hamilton, 1965) to below the $\frac{1}{2} \%$ significance level by changing the sign of the imaginary anomalousscattering factor $f^{\prime \prime}$ for the metal atoms.

Scattering factors for Rb and Cs from International Tables for X-ray Crystallography (1974), for N and O from SHELX76 (Sheldrick, 1976). Computer programs: SUSCAD (Guss, ,1979) for data reduction and Lp corrections, $A B S O R B$ (Guss, 1980) for absorption corrections, SHELX76 for structure solution and
refinement, and ORTEPII (Johnson, 1976) for structure drawings.

Discussion. The structures of RbNO_{3} and CsNO_{3} are the same and in general agreement with those determined by Shamsuzzoha \& Lucas (1982) and Lucas (1983) respectively. Atoms are numbered accordingly in the tables. Rotation of the unit-cell basis of RbNO_{3} by 180° around the line $\left[\frac{1}{3}, y, \frac{1}{2}\right]$ will bring it into coincidence with the basis chosen by Shamsuzzoha \& Lucas (1982). The CsNO_{3} cell basis coincides with that of Lucas (1983) after rotation by 180° around the line $\left[\frac{1}{2}, \frac{1}{2}, z\right]$ with a further 180° around the line $\left[x, x+\frac{1}{3}, \frac{1}{2}\right]$.

The coordinates in Table 1 refer to the basis of Shamsuzzoha \& Lucas (1982) and Lucas (1983). The standard deviations of the x coordinates for RbNO_{3} are a complex function of the original x and y standard deviations and were not determined. Coordinates and anisotropic thermal parameters referred to the original unit-cell bases of RbNO_{3} and CsNO_{3} are deposited.* Distances and angles are in Table 2.

Comparison of coordinates and bonding geometry with the neutron-data results of Shamsuzzoha \& Lucas (1982) and Lucas (1983) yielded some discrepancies above three standard deviations, the most significant of which are given in Table 3. The cell constants from this X-ray study have errors about one tenth of those of the previous work and have been used with the latter fractional coordinates in the comparison. Discrepancies in the coordinates (with $\Sigma \sigma$ in brackets) for RbNO_{3} are: $\mathrm{Rb}(3) z 0.20$ (1) and $\mathrm{N}(2) z 0.13$ (1) \AA. This leads to a difference of 0.13 (2) \AA in the $N(2)-O(4)$ bond length and of $8(1)^{\circ}$ in the $\mathrm{O}(5)-\mathrm{N}(2)-\mathrm{O}(6)$ angle. Discrepancies in the coordinates for CsNO_{3} are: $\mathrm{N}(1) y 0.23$ (2), $\mathrm{N}(2) y 0.20(2), \mathrm{N}(3) x 0.23$ (2) and $\mathrm{O}(8) y 0.22$ (2) \AA. The differences in bonding geometry are: $\mathrm{N}(2)-\mathrm{O}(4)$ 0.18 (3), $\mathrm{N}(3)-\mathrm{O}(8) 0.16(3), \mathrm{N}(3)-\mathrm{O}(9) 0.18$ (3) \AA, $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(1) 8(2), \mathrm{O}(9)-\mathrm{N}(3)-\mathrm{O}(7) 14$ (2) ${ }^{\circ}$. The discrepancies in the N positions are associated with those in the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles and $\mathrm{N}-\mathrm{O}$ bond lengths. The N in the nitrates is strongly bonded to the O atoms and as there is inequality between $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angles within any one nitrate ion the electron distribution (on which the present work depends) cannot wholly represent the position of the nucleus. The larger nitrate discrepancies for CsNO_{3} (compared with RbNO_{3}) can be attributed to masking of the fine detail by the more highly scattering Cs atom. No explanation can be found for the difference between the two $\operatorname{Rb}(3) z$ coordinates.

[^1]Table 1. Positional and equivalent isotropic thermal parameters

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a^{*}{ }_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
(a) RbNO_{3} (IV)				
Rb (1)	0.4557	0.5679 (1)	0.6267 (2)	2.9
Rb (2)	0.1190	0.2215 (2)	0.0000	$2 \cdot 4$
$\mathrm{Rb}(3)$	-0.2243	0.2206 (2)	0.6115 (5)	$3 \cdot 8$
N(1)	0.4347	0.5659 (9)	$0 \cdot 1009$ (13)	$2 \cdot 6$
N(2)	0.1057	0.2097 (9)	-0.4850 (13)	$3 \cdot 1$
$\mathrm{N}(3)$	-0.2554	0.2101 (10)	$0 \cdot 1079$ (11)	$2 \cdot 3$
$\mathrm{O}(1)$	0.3379	0.5586 (10)	-0.0011 (11)	$5 \cdot 8$
$\mathrm{O}(2)$	0.3980	0.4755 (10)	0.2205 (12)	$5 \cdot 1$
$\mathrm{O}(3)$	0.5618	0.6513 (8)	0.0573 (12)	4.3
$\mathrm{O}(4)$	-0.0031	0.1086 (8)	-0.3822 (10)	4.2
$\mathrm{O}(5)$	0.2309	0.2534 (9)	-0.4430 (13)	6.8
O (6)	0.0570	0.2450 (10)	-0.6132 (10)	4.1
$\mathrm{O}(7)$	-0.3129	$0 \cdot 1184$ (10)	0.2445 (11)	4.9
$\mathrm{O}(8)$	-0.1288	0.2798 (10)	0.0851 (11)	$5 \cdot 8$
O(9)	-0.3368	$0 \cdot 2186$ (10)	0.0064 (11)	6.0
(b) $\mathrm{CsNO}_{3}(\mathrm{II})$				
$\mathrm{Cs}(1)$	0.4488 (2)	0.5610 (2)	$0 \cdot 6328$ (6)	$3 \cdot 6$
$\mathrm{Cs}(2)$	$0 \cdot 1079$ (2)	0.2249 (2)	0.0000	$3 \cdot 1$
Cs(3)	-0.2289 (1)	0.2133 (1)	0.6488 (6)	$3 \cdot 0$
N(1)	0.4365 (15)	$0 \cdot 5528$ (15)	$0 \cdot 1048$ (22)	$2 \cdot 1$
N (2)	0.0906 (14)	$0 \cdot 1856$ (18)	-0.4679 (22)	$3 \cdot 2$
$\mathrm{N}(3)$	-0.2369 (14)	0.2112 (17)	$0 \cdot 1299$ (23)	$4 \cdot 0$
$\mathrm{O}(1)$	0.3458 (17)	0.5583 (20)	0.0243 (21)	7.5
$\mathrm{O}(2)$	0.4071 (18)	0.4993 (17)	0.2403 (19)	6.0
O(3)	0.5611 (17)	0.6575 (16)	0.0549 (19)	6.6
$\mathrm{O}(4)$	0.0090 (17)	$0 \cdot 1153$ (14)	-0.3803 (17)	4.4
$\mathrm{O}(5)$	0.2110 (20)	0.2337 (16)	-0.4119 (22)	7.0
$\mathrm{O}(6)$	0.0696 (21)	0.2490 (25)	-0.5950 (20)	17.0
$\mathrm{O}(7)$	-0.3186 (20)	0.1138 (15)	0.2461 (20)	7.9
$\mathrm{O}(8)$	-0.1310 (16)	0.2926 (19)	$0 \cdot 1387$ (27)	11.0
$\mathrm{O}(9)$	-0.3349 (20)	0.2272 (16)	0.0312 (16)	7.4

Fig. 1. (a) Nearest-neighbour nitrate and $R b^{+}$ions for $\mathrm{N}(1)$. Axes directions are $x / / a, y / / b, z / / c$.

As shown in Figs. $1(a)-(c)$ (b and c are deposited) the nitrate planes are nearly parallel to the pseudocube faces with the N near the cube centre and one $\mathrm{N}-\mathrm{O}$ bond nearly parallel to a cube edge. It can be seen that nitrates occupy sites of C_{1} symmetry which is in agreement with Karpov \& Shultin (1970). The figures also show that nitrates 2 and 3 occupy more symmetrical sites than nitrate 1 . Their symmetry is close to C_{s} or C_{2} which conforms with the conclusions of Brooker (1973).

Table 2. Nitrate-ion interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

(a) RbNO_{3} (IV)			
$\mathrm{O}(1)-\mathrm{N}(1)$	1.237 (11)	$\mathrm{O}(2)-\mathrm{N}(1)$	1.221 (11)
$\mathrm{O}(3)-\mathrm{N}(1)$	1.217 (10)	$\mathrm{O}(4)-\mathrm{N}(2)$	1.343 (12)
$\mathrm{O}(5)-\mathrm{N}(2)$	1.200 (11)	$\mathrm{O}(6)-\mathrm{N}(2)$	1.220 (11)
$\mathrm{O}(7)-\mathrm{N}(3)$	1.322 (11)	$\mathrm{O}(8)-\mathrm{N}(3)$	$1 \cdot 162$ (12)
$\mathrm{O}(9)-\mathrm{N}(3)$	1.179 (11)		
$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(1)$	118.1 (9)	$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(1)$	116.7 (10)
$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(2)$	124.6 (10)	$\mathrm{O}(5)-\mathrm{N}(2)-\mathrm{O}(4)$	119.0 (9)
$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(4)$	111.7 (9)	$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(5)$	129.3 (10)
$\mathrm{O}(8)-\mathrm{N}(3)-\mathrm{O}(7)$	122.2 (9)	$\mathrm{O}(9)-\mathrm{N}(3)-\mathrm{O}(7)$	117.5 (10)
$\mathrm{O}(9)-\mathrm{N}(3)-\mathrm{O}(8)$	120.2 (10)		
(b) CsNO_{3} (II)			
$\mathrm{O}(1)-\mathrm{N}(1)$	1.198(23)	$\mathrm{O}(2)-\mathrm{N}(1)$	1.168 (20)
$\mathrm{O}(3)-\mathrm{N}(1)$	1.325 (18)	$\mathrm{O}(4)-\mathrm{N}(2)$	1.079 (20)
$\mathrm{O}(5)-\mathrm{N}(2)$	1.226 (20)	$\mathrm{O}(6)-\mathrm{N}(2)$	1.291 (20)
$\mathrm{O}(7)-\mathrm{N}(3)$	1.340 (20)	$\mathrm{O}(8)-\mathrm{N}(3)$	1.052 (17)
$\mathrm{O}(9)-\mathrm{N}(3)$	1.398 (22)		
$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(1)$	117.9 (17)	$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(1)$	108.8 (16)
$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(2)$	127.0 (17)	$\mathrm{O}(5)-\mathrm{N}(2)-\mathrm{O}(4)$	114.2 (18)
$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(4)$	123.9 (18)	$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(5)$	118.8 (19)
$\mathrm{O}(8)-\mathrm{N}(3)-\mathrm{O}(7)$	$130 \cdot 0$ (21)	$\mathrm{O}(9)-\mathrm{N}(3)-\mathrm{O}(7)$	102.7 (14)
$\mathrm{O}(9)-\mathrm{N}(3)-\mathrm{O}(8)$	121.2(21)		

Table 3. Discrepancies in structural results between this work and that of Shamsuzzoha \& Lucas (1982) and Lucas (1983)

Discrepancies (in $\dot{\mathrm{A}}$) between coordinates

RbNO_{3}		CsNO_{3}	
Entity	Difference	Entity	Difference
Rb (3).	$0 \cdot 20$ (1)	$\mathrm{Cs}(1) \mathrm{x}$	0.046 (4)
$\mathrm{N}(2) \mathrm{y}$	0.06 (1)	$\mathrm{Cs}(1)$).	0.04 (1)
$\mathrm{N}(2) \mathrm{z}$	0.13 (1)	$\mathrm{Cs}(2) \mathrm{x}$	$0 \cdot 11$ (1)
$N(3)$)	0.05 (1)	$\mathrm{Cs}(2)!$	0.22 (4)
$\mathrm{N}(3) \mathrm{z}$	0.07 (1)	$\mathrm{Cs}(3) x$	0.075 (3)
$\mathrm{O}(1) \mathrm{z}$	0.08 (1)	$\mathrm{Cs}(3)$.	0.070 (4)
$\mathrm{O}(3)=$	0.07 (2)	$\mathrm{N}(1) \mathrm{r}$ -	0.23 (2)
$\mathrm{O}(4) \mathrm{z}$	0.05 (1)	$N(2) x$	$0 \cdot 16$ (2)
$\mathrm{O}(6)=$	0.06 (1)	N(2) ${ }^{\text {a }}$	$0 \cdot 20$ (2)
$\mathrm{O}(9)=$	$0 \cdot 06$ (1)	N(3) x	$0 \cdot 23$ (2)
		$\mathrm{O}(1) \mathrm{x}$	0.09 (2)
		$\mathrm{O}(2)=$	$0 \cdot 13$ (2)
		$\mathrm{O}(4) \mathrm{x}$	0.08 (2)
		O(5) x	0.15 (2)
		$\mathrm{O}(6) \mathrm{x}$	0.17 (3)
		$\mathrm{O}(7) \mathrm{z}$	0.07 (2)
		$\mathrm{O}(8)!$	0.22 (2)
		$\mathrm{O}(8) \mathrm{z}$	0.13 (3)

Discrepancies in bonding geometry

RbNO_{3}		CsNO_{3}	
Entity	Difference	Entity	Difference
$\mathrm{N}(2)-\mathrm{O}(4)(\dot{\AA})$	$0 \cdot 13$ (2)	$\mathrm{N}(1)-\mathrm{O}(1)(\dot{\AA})$	0.10 (3)
$\mathrm{N}(2)-\mathrm{O}(5)(\dot{A})$	0.07 (2)	$\mathrm{N}(1)-\mathrm{O}(3)(\dot{\text { A }}$)	$0 \cdot 10$ (3)
$\mathrm{N}(3)-\mathrm{O}(9)(\dot{\text { A }}$)	0.08 (1)	$\mathrm{N}(2)-\mathrm{O}(4)(\dot{\text { A }}$)	$0 \cdot 18$ (3)
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)\left({ }^{\circ}\right)$	4 (1)	$\mathrm{N}(3)-\mathrm{O}(8)(\AA)$	$0 \cdot 16$ (3)
$\mathrm{O}(4)-\mathrm{N}(2)-\mathrm{O}(6)\left({ }^{\circ}\right)$	6 (1)	$\mathrm{N}(3)-\mathrm{O}(9)(\AA)$	$0 \cdot 18$ (3)
$\mathrm{O}(5)-\mathrm{N}(2)-\mathrm{O}(6)\left({ }^{\circ}\right)$	8 (1)	$\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{O}(1)\left({ }^{\circ} \mathrm{O}\right.$	8 (2)
		$\mathrm{O}(9)-\mathrm{N}(3)-\mathrm{O}(7)\left(^{\circ}\right)$	14 (2)

The structure is most similar to that of phase III of TINO_{3} (Fraser, Kennedy \& Snow, 1975) which has a pseudo primitive tetragonal array of cations. Phase III of TlNO_{3} transforms on heating to phase II which is isomorphous with $\mathrm{RbNO}_{3}(\mathrm{IV})$ (Kennedy \& Patterson, 1961). From Fig. 2 in the TINO_{3} structure report it is
evident that the ratio of nitrate groups in each of the three perpendicular planes is $2: 1: 1$ and some nitrates within each plane are oriented at 60° to each other. However, in RbNO_{3} the corresponding ratio is 1:1:1 and there are two orientations at 30° to each other for nitrates in any one plane. Consequently during the transformation TlNO_{3} (III) $\rightarrow \mathrm{TlNO}_{3}$ (II) at least four nitrate groups in three unit cells must rotate by 90° about a line in their plane and some nitrates must rotate by 30° about their plane normals. In RbNO_{3} and CsNO_{3} similar nitrate rotations must occur when the crystals transform to and from the high-pressure structures.

The authors would like to thank Drs E. Horn and J. Rodgers for helpful comments. Dr S. W. Kennedy proposed the undertaking of the RbNO_{3} structure solution.

References

Adams, D. M. \& Tan, T.-K. (1981). J. Chem. Soc. Faraday Trans.
2, pp. 1233-1243.

Brooker, M. J. (1973). J. Chem. Phys. 59 (11), 5828-5829.
Delacy, T. P. \& Kennard, C. H. L. (1971). Aust. J. Chem. 24, 165-167.
Fraser, W. L., Kennedy, S. W. \& Snow, M. R. (1975). Acta Cryst. B31, 365-370.
Guss, J. M. (1979). SUSCAD. Program for data reduction. Sydney Univ.
Guss, J. M. (1980). ABSORB. Program for absorption corrections. Sydney Univ.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kalliomëki, M. S. \& Meisalo, V. P. J. (1979). Acta Cryst. B35, 2829-2835.
Karpov, S. V. \& Shultin, A. A. (1970). Phys. Status Solidi, 39, 33-38.
Kennedy, S. W. \& Patterson, J. H. (1961). Z. Kristallogr. 116, 143-148.
Lucas, B. W. (1983). Acta Cryst. C39, 1591-1594.
Pistorius, C. W. F. T. (1976). Prog. Solid State Chem. 11, 1-151.
Shamsuzzoha, M. \& Lucas, B. W. (1982). Acta Cryst. B38, 2353-2357.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge England.

Reaction between Dibenzo-30-crown-10* and Potassium Thiocyanate; Structures of the 1:1 Complexes, Anhydrous and Monohydrated, $\left[\mathrm{K}\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{10}\right)\right]^{+} . \mathrm{SCN}^{-}$and $\left[K\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{10}\right)\right]^{+} . \mathrm{SCN}^{-} . \mathrm{H}_{2} \mathrm{O}$

By John D. Owen, Mary R. Truter \dagger and Jonathan N. Wingfield
Molecular Structures Department, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, England

(Received 17 February 1984; accepted 10 May 1984)

Abstract

Monohydrate: $M_{r}=651 \cdot 8$, monoclinic, $P 2_{1} / n$, $a=13.335$ (2), $\quad b=12.386$ (1), $\quad c=20.584$ (2) $\AA, \quad \beta$ $=102.67(1)^{\circ}, \quad U=3317.0(6) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.305 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K a, \quad \lambda=0.71069 \AA, \quad \mu=$ $0.272 \mathrm{~mm}^{-1}, \quad F(000)=1384$, room temperature, R $=0.129$ for 3081 reflexions. The conditions required to obtain reproducibly the anhydrous and monohydrate forms of dibenzo-30-crown-10-potassium thiocyanate (1:1) complex have been established. The crystal structure of the anhydrous form has been re-refined and some anomalies in the published structure [Hašek,

[^2]Hlavatà \& Huml (1980). Acta Cryst. B36, 1782-1785] resolved by choice of a different space group, $C 2 / c$. The complex cation $\left[\mathrm{K}\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{10}\right)\right]^{+}$lies on a twofold axis; the ligand has the same conformation as in the corresponding potassium iodide complex, but the packing is different, the thiocyanate ions occupying (with disorder) centres of symmetry. The X-ray crystal structure of the monohydrate has been determined. The $\left[\mathrm{K}\left(\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{10}\right)\right]^{+}$cations are without symmetry and have four torsion angles differing by more than 20° from those of the anhydrous form. There is some disorder in the aliphatic chains of the ligand, similar to that in the isomorphous rubidium complex, and the $\mathrm{K}-\mathrm{O}$ distances are significantly longer than in the anhydrous complex. Thiocyanate anions and water molecules are hydrogen bonded, with some disorder of nitrogen, but not sulphur, in positions to give chains along the b axis.

[^0]: * Present address: CSIRO Division of Energy Chemistry, Lucas Heights Research Laboratories, Private Mail Bag 7, Sutherland, New South Wales 2232, Australia.

[^1]: * Lists of structure factors and anisotropic thermal parameters and Figs. $1(b)$ and (c) showing nearest-neighbour nitrate and Rb^{+}ions for $\mathrm{N}(2)$ and $\mathrm{N}(3)$ respectively have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39513 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^2]: * Systematic name: 6,7,9,10,12,13,15,16,23,24,26,27,29,30,32,-33-hexadecahydrodibenzo $[b, q][1,4,7,10,13,16,19,22,25,28]$ decaoxacyclotriacontin.
 \dagger Author for correspondence. Department of Chemistry, University College London, 20 Gordon Street, London WCIH 0AJ, England.

